
Specifications

1.Parameters

Nominal Voltage	51.2V	
Nominal Capacity	120ah	
Discharge Cut-Off	40V	
Charge Cut-Off	58.4V	
Charge Current	30A	
Cont. Discharge	150A	
Peak Discharge	300A (instantaneous)	
Impedance	≤200mΩ	
Charge Temperature	0°C - 55°C	
Discharge Temperature	-20°C - 65°C	
Charge Method	CC/CV	
Life Cycle	>6000Times	
Size	450*260*530mm(Customized)	
Weight	68KG	
Communication	RS485	

System Architecture:

Built-in BMS

No.	Item	Test Item	Creterion
1	Voltage	Charging Voltage	DC:54.8V CC/CV
		Balance voltage for single cell	3.50±0.025V
2	Current	Balance voltage for single cell	35±5mA
		Current consumption	≤50µA
		Maximal continuous charging current	50A
		Rated continuous discharging current	150A(Peak 300A)
3	Over charge Protection	Over charge detection voltage for single cell	3.65V±0.025V
		Over charge detection delay time	0.7S—1.3S
		Over charge release voltage for single cell	3.550±0.05V
4	Over discharge Protection	Over discharge detection voltage for single cell	2.50V±0.07V
		Over discharge detection delay time	1.6±0.5S
		Over discharge release voltage for single cell	3.00±0.75V
5	Over current Protection	Over current detection current	500±50A

		Over current detection delay time	1.6±0.5S
		Release condition	Cut load
6	Short Protection	Detection condition	Exterior short circuit
		Detection delay time	230uS—500uS
		Release condition	Cut load
7	Communication	Communicate	RS485
8	Resistance	Protection circuitry (MOSFET)	≤60mΩ
9	Temperature	Operating Temperature Range	-40~+85°C
		Storage Temperature Range	-40~+125°C

Safety performance:

NO.:	ltem	Test Methods	standard
		After the standard battery is charged, the initial state of the	
	Overeberge	battery is measured. When the battery status is normal, the	De not fire, de not
1	Overcharge performance	current is charged to 10.0V at 3C current, and then the	Do not fire, do not explode
	penomance	constant voltage is charged to the current of 0.01C.	oxprodo
		Observe the appearance of the battery changes.	
	Over	After the battery is charged, measure the initial state of the	Do not firo, do not
2	discharge	battery and discharge it to 0 V at 0.5C when the battery	Do not fire, do not explode
	performance	status is normal. Observe the battery appearance changes.	explode
		After the battery is charged, the initial state of the battery is	
		measured and the positive and negative poles (the total	
		resistance of the line is not more than $50m\Omega$) are directly	
3	External short circuit	shortened in the explosion proof hood. When the battery	Do not fire, do not explode
		temperature drops below the peak temperature by about	explode

		10 ° C, the test ends. Observe the battery temperature and appearance changes.	
4	Hot abuse	Measure the initial state of the battery, the battery standard charge, placed in the oven, the temperature $(5 \pm 2 \degree C) / min$ rate rose to $130 \pm 2 \degree C$ and heat 30min. Observe the battery appearance changes.	Do not fire, do not explode
5	fall	Test the initial capacity of the battery, the standard charge, the initial state of the battery, the test battery from the height (lowest point height) to 1m vertical position, the horizontal direction of free fall to the concrete floor, asked to fall 2 times.	Do not fire, do not explode
6	Heavy impact	A steel rod with a diameter of 15.8 mm was placed in the middle of the fully charged battery; then the weight of 10 kg was dropped from the height of 1.0 m to the upper part of the battery.	Do not fire, do not explode
7	Extrusion test	The batteries were placed between the two extruded surfaces of the extrusion apparatus, the cylindrical cores were parallel to the extrusion surface, gradually increasing the pressure to 13 kN, maintaining the pressure for 1 min.	Do not fire, do not explode